Performance Analysis of Approximate Message Passing for Distributed Compressed Sensing

نویسندگان

  • Gabor Hannak
  • Alessandro Perelli
  • Norbert Goertz
  • Gerald Matz
  • Mike E. Davies
چکیده

Bayesian approximate message passing (BAMP) is an efficient method in compressed sensing that is nearly optimal in the minimum mean squared error (MMSE) sense. Bayesian approximate message passing (BAMP) performs joint recovery of multiple vectors with identical support and accounts for correlations in the signal of interest and in the noise. In this paper, we show how to reduce the complexity of vector BAMP via a simple joint decorrelation (diagonalization) transform of the signal and noise vectors, which also facilitates the subsequent performance analysis. We prove that BAMP and the corresponding state evolution (SE) are equivariant with respect to the joint decorrelation transform and preserve diagonality of the residual noise covariance for the Bernoulli-Gauss (BG) prior. We use these results to analyze the dynamics and the mean squared error (MSE) performance of BAMP via the replica method, and thereby understand the impact of signal correlation and number of jointly sparse signals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Matching Pursuit Generalized Approximate Message Passing Algorithm

This paper proposes a novel matching pursuit generalized approximate message passing (MPGAMP) algorithm which explores the support of sparse representation coefficients step by step, and estimates the mean and variance of non-zero elements at each step based on a generalized-approximate-message-passing-like scheme. In contrast to the classic message passing based algorithms and matching pursuit...

متن کامل

State Evolution for General Approximate Message Passing Algorithms, with Applications to Spatial Coupling

We consider a class of approximated message passing (AMP) algorithms and characterize their high-dimensional behavior in terms of a suitable state evolution recursion. Our proof applies to Gaussian matrices with independent but not necessarily identically distributed entries. It covers – in particular– the analysis of generalized AMP, introduced by Rangan, and of AMP reconstruction in compresse...

متن کامل

Distributed Approximate Message Passing for Compressed Sensing

In this paper, an efficient distributed approach for implementing the approximate message passing (AMP) algorithm, named distributed AMP (DAMP), is developed for compressed sensing (CS) recovery in sensor networks with the sparsity K unknown. In the proposed DAMP, distributed sensors do not have to use or know the entire global sensing matrix, and the burden of computation and storage for each ...

متن کامل

Approximate message-passing with spatially coupled structured operators, with applications to compressed sensing and sparse superposition codes

We study a compressed sensing solver called Approximate Message-Passing when the i.i.d matrices —for which it has been designed— are replaced by structured operators allowing computationally fast matrix multiplications. We show empirically that after proper randomization, the underlying structure of the operators does not significantly affect the performances of the solver. In particular, for s...

متن کامل

An Approach to Complex Bayesian-optimal Approximate Message Passing

In this work we aim to solve the compressed sensing problem for the case of a complex unknown vector by utilizing the Bayesian-optimal structured signal approximate message passing (BOSSAMP) algorithm on the jointly sparse real and imaginary parts of the unknown. By introducing a latent activity variable, BOSSAMP separates the tasks of activity detection and value estimation to overcome the pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1712.04893  شماره 

صفحات  -

تاریخ انتشار 2017